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The method of novelty detection is applied to diagnose damage in a simple simulated
lumped-parameter mechanical system. It is shown that the system transmissibility provides
a sensitive feature for the detection of small stiffness changes. A simple yet successful means
of establishing warning levels is demonstrated.
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1. INTRODUCTION

In recent years, there has been a great deal of interest in applying Artificial Neural
Networks (ANNs) to the problem of damage identification. This is because the problem
is essentially one of pattern recognition and ANNs have proved extremely powerful in this
respect [1]. In reference [2], Rytter distinguishes four levels of damage identification; level
1. (DETECTION) the method gives a qualitative indication that damage might be present
in the structure; level 2. (LOCALIZATION) the method also gives information about the
probable position of the damage; level 3. (ASSESSMENT) the method gives an estimate
of the extent of the damage; level 4. (CONSEQUENCE) the method offers information
about the safety of the structure, e.g., estimates a residual life.

The neural network architecture of choice depends on which level of identification is
required. If levels 2 or 3 are required, a supervised learning scheme is required which
associates damage classes (location and severity) with input patterns. The input patterns
of features for training must be obtained from detailed a priori models; Finite Element
(FE) methods are often used. The most commonly used ANN structure is the feed-forward
Multi-layer Perceptron (MLP), usually trained by back-propagation of errors [3–18]. There
are some applications of more exotic structures: a counter-propagation network [19], a
Cerebellar Model Articulation Controller (CMAC) network [20] and a Radial Basis
Function (RBF) [21]. These ANNs retain the feed-forward structure but rely on an initial
clustering stage as part of the training. In this respect, they are hybrids between the
supervised and unsupervised paradigms.

All of the studies cited above are based on models of simplified structures: e.g., lumped
mass systems with three and eight degrees of freedom [15]; models of mult-storey buildings
[4, 14, 18]; trusses and frameworks [6, 7, 11, 16, 19]; metal and composite beams and plates
[3, 5, 12, 17, 22]; a stiffened panel [10]; a bridge element [13]. Before any of these networks
could be used with confidence on experimental data, one would require assurance that the
relevant models have appropriate accuracy. There are two issues here. First, the model of
structure must be correct; and, second, the model of the damage must be correct. In most
cases, the damage is simulated by reducing the stiffness of individual elements of the FE
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model. Only in reference [9] is a fracture mechanical model adopted to represent a fatigue
crack. The a priori model is clearly critical and for complex structures will represent the
most intensive and expensive part of the analysis. The ANN training is usually a somewhat
routine process once training data is established.

Level 4 methods present different problems as detailed questions of fatigue and fracture
arise if residual life is to be predicted with any degree of confidence. The author is unaware
of any work to date which addresses this problem successfully using neural networks.

The object of the present study is to eschew the model-based approach and therefore
pave the way for diagnostic methods applicable to systems of arbitrary complexity. There
is of course an opportunity cost; the method described here will only provide a level-one
diagnostic according to Rytter’s classification.

A recent thread in ANN research is associated with methods of novelty or anomaly
detection. The objecting is to monitor a sequence of patterns and signal if one arises which
differs significantly from the herd. The application to condition monitoring or damage
detection is manifest. However, there appear to be no precedents in the engineering
literature. An interesting study of anomalous masses in mammograms is presented in
reference [23]. The method is also applied to the detection of epileptic episodes in EEG
records in reference [24]. There are many methods of novelty detection, the approach taken
here is based on the use of Auto-Associative (AA) networks as described in reference [25].

As an aside, the establishment of robust novelty detection methods has important
implications for the validation of neural networks [26]. If a pattern recognition network
can also return a diagnostic which indicates how far removed the input pattern was from
its training experience, the user can be directed to call in expert help in cases where the
network is forced to extrapolate.

The layout of the paper is as follows. In section 2 a brief description of the Multi-Layer
Perceptron Network is given and in section 3 a description of how the Auto-Associative
form of the network is used to provide a measure of novelty or novelty index. In section
4 the system under study and the features used for pattern recognition are described.
Section 5 contains the results of the study. In section 6 the use of warning levels is discussed
and the paper concludes with a general discussion of the method in section 7.

2. THE NEURAL NETWORK

For the sake of completeness, a brief description of the Multi-Layer Perceptron (MLP)
follows; for a more detailed discussion, the reader is referred to the seminal work [27].

The MLP is simply a collection of connected processing elements called nodes or
neurons, arranged together in layers (see Figure 1). Signals pass into the input layer nodes,
progress forward through the network hidden layers and finally emerge from the output
layer. Each node i is connected to each node j in its preceeding layer through a connection
of weight wij , and similarly to nodes in the following layer. Signals pass through the node
as follows: a weighted sum is performed at i of all the signals xj from the preceding layer,
giving the excitation zi of the node; this is then passed through a non-linear activation
function f to emerge as the output of the node xi to the next layer: i.e.,

xi = f(zi)= f0sj

wijxj1. (1)

Various choices for the function f are possible; the hyperbolic tangent function
f(x)= tanh (x) is used here. One node of the network, the bias node, is special in that it
is connected to all other nodes in the hidden and output layers, the output of the bias node
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Figure 1. The Multi-Layer Perceptron (MLP) neural network.

is held constant throughout, in order to allow constant offsets in the excitations zi of each
node.

The first stage of using a network to model an input-output system is to establish the
appropriate values for the connection weights wij . This is the training or learning phase.
Training is accomplished by using a set of network inputs for which the desired network
outputs are known. At each training step, a set of inputs is passed forward through the
network yielding trial outputs which are then compared to the desired outputs. If the
comparison error is considered small enough, the weights are not adjusted. If, however,
a significant error is obtained, the error is passed backwards through the net and a training
algorithm uses the error to adjust the connection weights. The algorithm used in this work
is the back-propagation algorithm in which the parameter update rule is used: i.e.,

w(m)
ij (t)=w(m)

ij (t−1)+ hd(m)
i (t)x(m−1)

j (t), (2)

where d(m)
i is the error in the output of the ith node in layer m, and t is the index for the

iteration. This error is not known a priori but must be constructed from the known errors
d(l)

i = yi − ŷi between the network outputs ŷi and the desired outputs yi . This is the origin
of the term back-propagation. The update used here is modified by the inclusion of an
additional momentum term which allows previous updates to persist:

Dw(m)
ij (t)= hd(m)

i (t)x(m−1)
j (t)+ aDw(m)

ij (t−1). (3)

The effect of this extra term is to damp out oscillations in the weight estimates. The
coefficients h and a determine the overall speed of learning; unfortunately, there are no
hard and fast rules as to their optimum values for a given problem.

Once the comparison error is reduced to an acceptable level over the whole training set,
the training phase ends and the network is established.
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3. THE NOVELTY INDEX

As described above, the objective of novelty detection is to establish if a new pattern
differs from previously obtained patterns in some significant respect. The application to
on-line damage detection is clear. It is assumed that damage will alter the measured
patterns, so that novelty will indicate a fault. The important point is to identify significant
changes: i.e., those which cannot be attributed to fluctuations in the measured patterns
due to noise.

The approach taken here is simply to train an Auto-Associative Network (AAN) on the
patterns. This simply means a feed-forward Multi-Layer Perceptron (MLP) network which
is asked to reproduce at the output layer those patterns which are presented at the input.
This would be a trivial exercise except that the network structure has a ‘‘bottleneck’’: i.e.,
the patterns are passed through hidden layers which have fewer nodes than the input layer
(see Figure 2). This forces the network to learn the significant features of the patterns; the
activations of the smallest, central layer, correspond to a compressed representation of the
input. Training proceeds by presenting the network with many versions of the pattern
corresponding to normal condition corrupted by noise and requiring a copy at the output.

The novelty index n(z) corresponding to a pattern vector z= zi , i=1, . . . , N is then
defined as the Euclidean distance between the pattern z and the result of presenting it to
the network ẑ,

n(z)= >z− ẑ>. (4)

It is clear how this works. If learning has been successful, then z= ẑ for all data in the
training set, so that n(z)1 0 if z represents the normal condition. If z corresponds to
damage, n(z) is non-zero. Note that there is no guarantee that n will increase monotonically
with the level of damage. This is why novelty detection only gives a level one diagnostic
in Rytter’s terminology [2].

Figure 2. Auto-Associative Neural (ANN) network (most connections are suppressed).
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4. THE TEST SYSTEM AND DATA

The simulated system which shall be used to demonstrate the novelty detection method
is the three-degree-of-freedom (3-DOF) lumped-parameter system shown in Figure 3. The
equations of motion are as follows:

m1ÿ1 + c11ẏ1 + k11y1 + k12(y1 − y2)= x1(t),

m2ÿ2 + c22ẏ2 + k21(y2 − y1)+ k23(y2 − y3)= x2(t),

m3ÿ3 + c33ẏ3 + k32(y3 − y2)+ k33y3 = x3(t) (5)

The values m1 =m2 =m3 =1, c11 = c22 = c33 =20 and k11 = k12 = k21 = k23 = k31 =
k33 =104 are used below.

The fault in this system is simulated by reducing the stiffness k12 by various degrees. Note
that although the system is simple, and the means of simulating a fault is simple, because
in the method one assumes no a priori model, it has much wider applicability than this
simulation. The method does not seek to identify a specific damage state, but only a
change. Consider, for example, the problem of detecting faults in composite plates. Even
the normal condition may be difficult to model due to the complexity of the geometry or
the lay-up. The fault states, e.g., fibre pullout, fibre fracture, matrix fracture and
delamination, could be even more difficult to model. All the novelty index method needs
is a sequence of measurements corresponding to normal condition; the simplest model can
be used. Even experimental data can be used if available.

The feature for network training is chosen to be the transmissibility function between
masses m1 and m2, denoted here by H(v). This has previously proved useful in pattern
recognition for vibration problems [28]. It is computed here by simulating the response

Figure 3. The three-degree-of-freedom simulated system.
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to a harmonic excitation x1(t)=X cos(wt) for a range of frequencies. The relative gain and
phase between y1 and y2 is extracted in each case. However, only the magnitude is used
below for training. A fourth order Runge–Kutta routine is used to integrate the equations
of motion (5) [29]. The program used computes transmissibilities for arbitrary lumped mass
non-linear systems. Note that for the linear system studied here, the functions could be
obtained directly from the frequency domain versions of equations (5). The H(w) is
sampled at 50 regularly spaced points between 0 Hz and 50 Hz to produce the basic
training vector.

The basic transmissibility function is shown in Figure 4, together with the functions
corresponding to 1%, 10%, and 50% reductions in k12. The 50% reduction produces a
function which shows gross changes and visual inspection suffices to identify the fault in
this case. The 10% reduction causes more subtle changes and the 1% reduction is of a
very small order.

5. RESULTS OF NOVELTY DETECTION

The first stage of producing the novelty index is training the AA network. The training
set was obtained by making 1000 copies of the transmissibility pattern corresponding to
normal condition and corrupting each copy with different Gaussian noise vectors. In the
absence of any prescription for the noise, the Gaussian process (with unit-proportional
covariance matrix) was chosen; a minimal requirement for any pattern recognition system
is that it should be transparent to normally distributed noise. In geometrical terms, the
assumption here is that the normal condition set in pattern space is spherical. More
complicated sets can always be contained within an appropriately large sphere: i.e., for
high enough Gaussian noise. Note that such spheres will in general contain anomalous

Figure 4. The transmissibility function for network training with various different stiffness reductions. ———,
No fault; - - - -, 1% fault; — — —, 10% fault; — - —, 50% fault.
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patterns and novelty indices based on training sets with high Gaussian noise might
occasionally return false negatives.

Two simulations were carried out in order to investigate how the sensitivity of the
novelty index depends on the noise level.

5.1.  

In this case the R.M.S. of the added noise was 0·01, compared with a peak value of 2·5
for the transmissiblity function. Three sample patterns are given in Figure 5. The degree
of corruption is small but commensurate with the deviation in the 1% fault pattern (see
Figure 4). This means that the 1% fault could not be detected by visual inspection at this
noise level, unlike the 10% and 50% faults. The neural network structure was determined
by trial and error, acceptable results were obtained for a network with five layers and node
structure 50: 40: 30: 40: 50. The network was trained for 200 000 cycles, with the patterns
presented in random order. An adaptive learning schedule was adopted in which the
learning rate and momentum were chosen to be high in the early stages of training (0·3
and 0·4 respectively) but fell to low values (0·05 and 0·05) later. After training, the novelty
index was evaluated on the training set and the results are shown in Figure 6. The mean
value of n is 0·04 on the training set.

Testing sets were constructed by concatenating 1000 noise-corrupted copies of the 50%,
10% and 1% fault transmissibility on to the normal condition training data. The results
of computing the novelty index for the 50% and 1% cases are given in Figures 7 and 8.
The index unambiguously signals a fault in all cases, even the 1% damage case.

5.2.  

The approach of the previous section was repeated on data corrupted with Gaussia noise
of R.M.S. 0·05. Three sample patterns are shown in Figure 9. The level of corruption is
now significant. One would usually construct transmissibilities from averaged

Figure 5. Sample patterns from the low noise training set. ———, Sample 1; - - - - , Sample 2; — — —, Sample 3.
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Figure 6. The novelty index evaluated on low noise 50:40:30:40:50 training set.

measurements from a frequency response analyzer. The variations between patterns would
depend on the ambient noise level, the degree of ‘‘colour’’ in the noise and the number
of averages taken. It was assumed here, on the basis of experience in the laboratory, that
the higher of the levels of noise corruption used here was realistic. The deviations in the

Figure 7. The novelty index evaluated on low noise data: training set and 50% fault data.
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Figure 8. The novelty index evaluated on low noise data: training set and 1% fault data.

functions are large compared with the distortions induced by a 1% stiffness reduction (see
Figure 4).

The AA network was trained exactly as before, the same structure and learning schedule
were used. After training, the novelty index was evaluated over the training set. The mean

Figure 9. Sample patterns from the high noise training set. ———, Sample 1; - - - -, Sample 2; — — — ,
Sample 3.
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Figure 10. The novelty index evaluated on high noise data: training set and 10% fault data.

level for the index on data corresponding to normal condition was 0·2 compared with 0·04
for the low noise case.

Testing sets were constructed as before for the 50%, 10% and 1% fault cases and the
results for the 10% and 1% faults are presented in Figures 10 and 11. The novelty index

Figure 11. The novelty index evaluated on high noise data: training set and 1% fault data.
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Figure 12. The novelty index evaluated on high noise data: training set and 2% fault data.

signals the 50% and 10% faults without difficulty, but is unable to flag the 1% fault.
An additional simulation with a 2% reduction in stiffness produced the result given in
Figure 12, the change in the novelty index is just distinguishable.

6. ALARM AND WARNING LEVELS

Given a means of tracking the time-variation of the system novelty index, it is natural
to wish for some automatic means of establishing if significant change has occurred in the
system condition.

The basic technique adopted here originates in the work of Cempel [30] on machine
condition monitoring. To monitor the health of a structure, attention can be restricted to
the time variation of one or more parameters which are associated with the condition. As
an example, the temperature at a point on the structure could be recorded at regular
intervals; any significant variation from a constant value may indicate a change in
condition. The problem here is to define the meaning of significant. It is important to
establish what range of values for a monitored parameter indicates normal condition. If
monitored data is available from a sufficiently large sample of similar machines, which are
in good condition, the variation in parameter values over the sample set can be used to
determine confidence intervals for the expected values of parameters. However, this
approach to fixing acceptable values for parameters has met with limited success;
monitored parameters vary widely between nominally identical machines. These variations
arise due to differences in manufacture, operating conditions, age, etc. It has been
suggested that a much more reliable means of monitoring condition is to monitor trends
in the observed parameters [30, 31].

To assist in the interpretation of condition monitoring data, and to highlight abnormal
or dangerously high readings from a background of values, it is common for each
monitored parameter to have associated with it two symptom limit routine values. These
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values are often defined as follows: the warning level is the value of the parameter above
which it can be considered that a reading is sufficiently abnormal to require investigation;
the alarm level is the value of the parameter above which it can be considered that the
machine is no longer suitable for operation.

The situation can be simplified somewhat for novelty detection in structures. There is
arguably no need to consider the alarm condition, as the novelty will not usually be a
normalized quantity in the sense that the damage extent will not follow from a given value
of novelty; the object is simply to signal change. The question is: How does one establish
the warning level? Cempel’s idea is very straightforward: the values of monitored
parameters during stationary behaviour of the system are used to establish statistics for
the expected variation in parameter readings. The warning level is thus a dynamical
quantity, its value at a given time being dependent on the behaviour of the novelty index
estimates at earlier times. If at each sampling instant i, a single estimate ni is updated, the
upper and lower warning levels for the next estimate ni+1 can be defined as n̄2 asv , where
n̄ and sv are, respectively, the mean and standard deviations of all novelty estimates up
to and including ni . If the distribution of ni; i=1, . . . , N is Gaussian, standard theory
shows that a value of 1·96 for a will give estimates within the warning levels with 95%
probability. The proportion of estimates which fall outside the warning interval purely due
to statistical variations is termed the percentage unnecessary repair in reference [30], these
signals are often referred to as false positives. a is to some extent determined by the
frequency of measurement; if a is low and many measurements are taken, many false
positives will result. For example, the above simulation had 1000 points in the training
set for the novelty, with a value of 1·96 for a, there would occur 50 false positives in the
training set if accurate statistics were estimated. The value of a taken here was 4·0; if
Gaussian statistics are used, this would result in an expected number of 0·064 false
positives.

To minimize data storage, the mean and standard deviation of the parameter records
can be adjusted recursively by using the update formulae

n̄i+1 =0 i
i+11 n̄i +0 i

i+11 ni+1, (6)

s2
ni+1 =0i−1

i 1s2
ni + n̄2

i +
1
i
n2

i+1 −0i+1
i 1n̄2

i+1, (7)

where ni+1 is the curent estimate and ni+1 is the corresponding update of the mean value.
If the warning levels are computed for the 1% fault in the low noise case described in

the previous section, the results are shown in Figure 13. It is clear that the novelty estimate
crosses the upper warning level almost immediately after the condition changes. It is
unimportant that a number of the index values do not exceed the threshold because of
statistical variations in the index: what is required is that at least one evaluation triggers
the warning level within a short time of the parameter change. In the high noise case, the
fault was not indicated. This is not surprising, as the fault does not produce a visible change
in the novelty index. The 2% fault in the high noise case also failed to trigger the warning
even though a visible change occurred in the index. This shows how critical the choice of
a is; there is a trade-off between the number of false positives tolerated and the sensitivity
of the warning indicator.
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Figure 13. Warning levels for the novelty index evaluated on low noise data: training set and 1% fault data.

Note that there is no in-built forgetting factor for the mean and standard deviation
calculation. As a result, the final values for the upper and lower warning levels are n̄2 4sn

,
where the statistics are calculated over the whole set of novelty values.

7. DISCUSSION

The holy grail in health monitoring of aerospace structures is an on-line method which
would use the ambient vibrations of the system to detect reliably structural faults. The
novelty index may allow some progress in this direction.

In the first place, no model is required, either for the structure or the fault. However,
the choice of feature for the novelty index is critical. The transmissibilities used in this
report are attractive because they can be measured simply and they do not depend on the
type of excitation to which the structure is subjected. They therefore offer the possibility
of using ambient excitation. Note that the transmissibility used throughout this paper is
chosen to detect damage between masses m1 and m2. It will be completely insensitive to
damage between mass m1 and ground, for example. In practice, a vector of novelty indices
would be required in order to ensure coverage of the structure. Some might be based on
transfer function measurements in order to detect faults in connections to ground. This
is a disadvantage, as the system would then require a network of sensors, although the
number needed would in principle be far fewer than the number of monitored parameters.
A possible advantage of using a sensor network is that information might then be available
on the probable location of faults. This would lift the fault diagnostic to level two in
Rytter’s classification.

It is important to establish what degree of change in the index is significant. Suppose
that a strain-based index were defined for an aircraft. There are many manoeuvres which
may cause wide fluctuations in such a diagnostic, so the neural network used to define the
index would have to be trained with example patterns which adequately spanned the flight
envelope, so that false positives would not occur during normal flight.
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An important point is that the index may change for reasons other than damage; if
an aircraft drops a store, the transmissibilities will change. Some system is needed which
will ignore changes in the novelty index due to planned changes in the structure. If
warning levels are being used, they should be reset after planned changes. To make the
warning levels sensitive to more than one change in condition, it would be necessary to
adopt an adaptive estimator of the parameter statistics. The simplest approach is to take
a moving window for the mean and standard deviation estimates on which the warning
levels are based. If a window of 100 points is used, the warning levels for the 1% fault
in the low noise case are as shown in Figure 14. The statistics clearly reset themselves
after the change. An alternative to the moving rectangular window is to include a
forgetting factor in the calculation of the alarm level; this would effectively induce a
moving exponential window with decay constant proportional to the factor. In practice,
there is always a trade-off between window length and the speed with which the alarm
level responds; this is discussed in some detail in reference [32]. In flight, there will be
a gradual change in the parameters of an aircraft due to burning of fuel; the novelty index
and warning levels should be insensitive to this. In Figure 15 are shown the warning levels
for the 1% fault data at low noise, when a linear trend has been added. The warning
level is still triggered.

Finally, it was mentioned above that the novelty index need not necessarily be simply
correlated with the extent of damage. For the simulations discussed here, the contrary in
Figure 16 is shown. It may simply be fortuitous that the index appears to be a linear
function of the damage. However, under such circumstances (even under more general
conditions where the index is monotonically increasing with damage), it might be possible
to calibrate the index–damage curve by using FE analysis or experimental data. This might
give the diagnostic some level-three capabilities.

Figure 14. Warning levels for the novelty index evaluated on low noise data: training set and 1% fault data.
Levels computed by using a 100-point moving window.
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Figure 15.Warning levels for the novelty index evaluated on lownoise data: training set and 1% fault data. Linear
trend added to data.

Figure 16. The variation of the novelty index with the extent of damage. w, Novelty index, low noise; ——, linear
regression, low noise; W, novelty index, high noise; – – –, linear regression, high noise.

8. CONCLUSIONS

It has been shown how novelty detection methods can be used to diagnose damage in
systems. The concept of warning and alarm levels can be adapted profitably from the field
of condition monitoring to give automatic signalling of failure.
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